Breast Cancer Prediction using SVM with PCA Feature Selection Method
نویسندگان
چکیده
منابع مشابه
Feature Selection using PSO-SVM
method based on the number of features investigated for sample classification is needed in order to speed up the processing rate, predictive accuracy, and to avoid incomprehensibility. In this paper, particle swarm optimization (PSO) is used to implement a feature selection, and support vector machines (SVMs) with the one-versus-rest method serve as a fitness function of PSO for the classificat...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملFeature Selection Using Genetic Algorithm for Face Recognition Based on PCA, Wavelet and SVM
Many events, such as terrorist attacks, exposed serious weaknesses in most sophisticated security systems. So it is necessary to improve security data systems based on the body or behavioral characteristics, called biometrics. With the growing interest in the development of human and computer interface and biometric identification, human face recognition has become an active research area. Face...
متن کاملSurvival Prediction and Feature Selection in Patients with Breast Cancer Using Support Vector Regression
The Support Vector Regression (SVR) model has been broadly used for response prediction. However, few researchers have used SVR for survival analysis. In this study, a new SVR model is proposed and SVR with different kernels and the traditional Cox model are trained. The models are compared based on different performance measures. We also select the best subset of features using three feature s...
متن کاملHeart Disease Prediction System Using Anova, Pca and Svm Classification
Heart disease is a term that assigns to a large number of healthcare conditions related to heart. These medical conditions describe the unexpected health conditions that directly control the heart and all its parts. The main objective of this research is to develop an efficient heart disease prediction system using feature extraction and SVM classifier that can be used to predict the occurrence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
سال: 2019
ISSN: 2456-3307
DOI: 10.32628/cseit1952277